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I. INTRODUCTION

Chiral SU(2)L×SU(2)R symmetry is presently understood as originating from the small
masses of the u and d quark, i.e. as an approximate symmetry of the underlying QCD
Lagrangian. Therefore, for any model it is important to what extend it is compatible with
(broken) chiral symmetry (CS). In this respect we make some remarks on the Nijmegen
soft-core OBE-model [1, 2], henceforth called SC-model. In the SC-model we employ the
derivative pion-nucleon coupling, i.e. γµγ5. This means that in pion-nucleon scattering there
is virtually no contribution from the NN̄ -pair terms. The strong ε-exchange contribution to
the pion-nucleon scattering length a0

0 can be canceled completely by the pomeron-exchange
contribution. So, with the derivative pion-nucleon coupling and the pomeron contribution
the soft-pion theorems [3] can be satisfied [4]. The γµγ5-coupling is characteristic for the
non-linear realization of chiral-symmetry. In that case there is no need for (fictiteous) σ.
Henceforth we will therefore only discuss models based on this non-linear realization, like
the SC-model. (Notice, the broad ε(760)-meson as employed in the Nijmegen OBE-models,
is not to be confused with the σ. )

Going beyond OBE, including two-pion exchange etc., one has to include also meson-pair
vertices, which occur naturally in the non-linear chiral invariant Lagrangians. In this paper
we will discuss two recent models on the baryon-baryon interactions, where strict constraints
from CS are imposed.
a. Chiral-Perturbation Model. In chiral-perturbation-theory (CPTh) the amplitudes
are expanded in power series of f−1

π . For this the non-linear realization of chiral-symmetry
is very convenient, since it leads automatically to such an expansion. This in contrast to the
linear realization. Recently, Ordóñez, Ray, and van Kolck [5] presented a nucleon-nucleon
(NN) potential based on an effective chiral Lagrangian of pions, nucleons, and ∆ isobars.
Using 26 free parameters, the agreement with the experimental scattering data was found
to be satisfactory up to lab energies of about 100 MeV. An extension to higher energies
and a further improvement in the description of the data would require an expansion to
higher orders in chiral perturbation theory, making the model much more complicated and
introducing many new parameters. This makes the CPTh-approach not very attractive for
the investigation of baryon-baryon interactions and nuclear and hyper-nuclear systems. The
extension to SU(3)×SU(3) has not been attempted so far. Also, in this case the convergence
of the CPTh-expansion is expected to be worse than in the NN case.
b. Chiral ESC-Model. In [7] we give a chiral-invariant version of the ESC-model [8,
9, 10]. In contrast to the procedure in the CPTh-models, like [5], here all mesons other
than the pion [6] are not ’integrated out’. Instead, the succesful approach of the OBE-
models is used and all lowest-lying mesons with masses lower than 1 GeV are included.
The BB potential model is then obtained by evaluating the standard one-boson-exchange
contributions involving these mesons, but now including the contributions of the box and
crossed-box two-meson diagrams and of the pair-meson diagrams where at least one of the
baryon lines contains a pair-meson vertex [10]. We stress that we do not use CPTh, but
we employ CS to generate the LI and to implement constraints for the associated coupling
constants. The pair-meson interactions of the ESC-model, involving pions, arise as a direct
consequence of CS. In Refs. [10] we already showed that the inclusion of the two-meson (box,
crossed-box, and pair) contributions provides a substantial improvement in the description of
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the NN-data as compared to a potential containing only the standard one-boson exchanges.
This important result motivates to go beyond the NN model and to investigate whether a
similar approach will also be fruitful in the construction of an extended hyperon-nucleon
(YN) potential. An important motivation for the development of an extended YN model
is provided by the study of hypernuclei using one-boson-exchange models, see e.g. [11, 12].
For that purpose, we discussed in [7] the non-linear realization of CS to SU(3)L×SU(3)R to
obtain a CS meson-baryon interaction Lagrangian. This SU(3)-invariant LI describes the
coupling of the pseudo-scalar, scalar, vector and axial-vector mesons with the baryon-octet
containing the N, Λ, Σ, and Ξ.

The content of this paper is as follows. In section II a short outline of the SU(3)×SU(3)
construction is given. In section III a brief description is given of the estimates of the single-
meson couplings. In section IV the procedure and results for the meson-pair vertices are
reviewed. In section V we discuss the results for NN and the prospects for the applications
to YN and YY.

II. SU(3) CHIRAL SYMMETRY

In [7] we have given an SU(3) manifest chiral invariant formulation of an ESC-model,
which is a non-linear extension of the linear SU(2)× SU(2) σ-model of Ko and Rudaz [13].
Here, we give an outline of this model. For a general review on CS we refer to [14, 15]. The
baryon-octet matrix Ψ left- and right-handed components, ΨL,R = 1

2(1∓ γ5)ψ, transform as

ΨL → LΨLL†, ΨR → RΨRR†. (1)

In the linear representation one has an SU(3) singlet scalar σ, and a pseudo-scalar octet
πa (a = 1, . . . , 8). One finds for

Σ = σ + iλaπa, (a = 1, . . . , 8), (2)

where λa are the Gell-Mann matrices, that Σ transforms under global SU(3)L × SU(3)R as
Σ → LΣR†, where L and R are elements of SU(3).

The transformation to the non-linear formulation is effected by introducing

BR = uΨRu†

BL = u†ΨLu

}

, u(ξa) = exp[iλaξa] ≡ exp
[

iλaπ′a
2f0

]

, (3)

where f0 = 〈σ〉. (In the absence of vector and axial-vector gauge fields f0 = fπ.) Note that
u(ξa) are elements of the coset space SU(3)L×SU(3)R/SU(3)V . The π′a-fields are identified
with the octet of physical pseudoscalar fields:

1√
2
λaπ′a =


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+
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, (4)
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The octet of baryon fields reads

B =










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



Σ0
√
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6

Σ+ p
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+
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6

n

Ξ− −Ξ0 − 2Λ√
6





















, (5)

which transforms as B → HBH†. with

H =
√

Lu2R† Ru† =
√

Ru† 2L† Lu ∈ SU(3), (6)

and u → LuH† = HuR†. The covariant derivative of the baryon octet reads

DµB = ∂µB + i[Γµ, B]. (7)

where the connection is Γµ = − i
2

(

u†∂µu + u∂µu†
)

.
The field combinations uΣ†u and u†Σu† both transform according to the baryon octet

matrix B. So, defining χ± = 1
2

(

u†Σu† ± uΣ†u
)

, the simplest chiral invariant interaction
Lagrangian is given by

LI = −gs,1 Tr(Bχ+B)− gs,2 Tr(BBχ+), (8)

where gs,1 and gs,2 are arbitrary constants.
However, this Lagrangian gives for all baryons in the octet the same mass, M = (gs,1 +

gs,2)f0. In order to generate the thrical baryon masses, an octet of scalar fields, λaσa, is
added with a non-vanishing vacuum expectation value for the isoscalar octet member. To
incorporate this we write

Σ = F + λ0s0 + λasa + iλaπa, (a = 1, . . . , 8), (9)

where πa are the original pseudoscalar fields and F the vacuum expectation value of the
scalar-nonet fields [7]. It can be shown that it is still possible to find a transformation u(ξ),
which transforms away the octet of original pseudoscalar fields, while leaving the matrix
F invariant, and where the ξa fields can be identified with an octet of new pseudoscalar
fields. As before, the new χ± are defined in terms of the new u and Σ. However, χ± contain
the original pseudoscalar fields in a complicated way. But since χ+ behaves like a set of
scalar fields, one can simply define these new fields to be the physical scalar fields and any
reference to the original scalar fields can be dropped. Omitting primes, the nonet of the new
scalar fields is given by

χ+ = F + λ0s0 + λasa, (10)

where s0 now denotes the new scalar singlet and the octet matrix is given by 1√
2
λasa, which

is similar to 4 but with π → a0, η8 → s8, and K → κ. The octet isoscalar s8 and singlet s0

are mixed to give the physical f0(980) and ε(760). Also, −iχ− can be identified as a new
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isosinglet pseudoscalar field, not present before. Because it transforms as H(−iχ−)H†, it
can be formally added to the octet pseudoscalar matrix, which completes the nonet. It must
be remembered, however, that group transformations are only valid for the (traceless) octet
matrices.

The next step is to extend the global SU(3) × SU(3) to a local chiral symmetry. The
required gauge fields are given by two octets of combinations of vector and axial-vector fields.
The vector octet is 1√

2
λaρa, again similar to 4 but now with π → ρ, η8 → ω8, and K → K∗,

and analogous for the axial-vector octet. For the details of this extension we refer to the
forthcoming paper [7]. Also, there one can find a detailed discussion of the description of
the meson masses in the context of this chiral model.

The main interest for this paper is the discussion of the baryon-baryon interaction in
the chiral framework. The main result of the description of the physical meson fields in
the chiral context is that we have arrived at various 3 × 3-matrices of the general form
Φ = 1√

2
λcφc. These matrices contain scalar, pseudo-scalar, vector, and axial-vector fields,

which, except for the vector fields, all transform similarly to the baryon fields. This fact
leads to the following chiral-invariant combinations:

[

BBΦ
]

F
= Tr(BΦB)− Tr(BBΦ),

[

BBΦ
]

D
= Tr(BΦB) + Tr(BBΦ)− 2

3 Tr(BB)Tr(Φ),
[

BBΦ
]

S
= Tr(BB)Tr(Φ). (11)

A general interaction Lagrangian, which satisfies chiral-symmetry is the SUf (3)-invariant

LI = −goct
√

2
{

α
[

BBΦ
]

F
+ (1− α)

[

BBΦ
]

D

}

− gsin
√

1
3

[

BBΦ
]

S
, (12)

where α is the F/(F + D) ratio. The meson field matrices are given by

Φsc =
1√
2

[F + λcsc] , (13)

Φvc =
−i√
2gV

γµ

[

u†
(

∂µ + i
2gV λc(ρµ + Aµ − hDµπ)c

)

u

+u
(

∂µ + i
2gV λc(ρµ − Aµ + hDµπ)c

)

u†
]

, (14)

Φax =
−i√
2gV

γ5γµ

[

u†
(

∂µ + i
2gV λc(ρµ + Aµ − hDµπ)c

)

u

−u
(

∂µ + i
2gV λc(ρµ − Aµ + hDµπ)c

)

u†
]

, (15)

where Dµ(λπ) = ∂µ(λπ)− i
2gV [(λπ), (λρµ)], and h chosen such that the mixing between the

axial-vector and pseudoscalar fields in the meson sector vanishes. Note that the pseudovector
coupling of the pseudoscalar fields is already included in the axial-vector field matrix Φax.
Φax ≡ γ5γµa′µ.

In addition to the electric coupling Φvc ≡ γµρ′µ, it is also possible [16] to include a chiral-
invariant magnetic coupling σµνρ′µν , where ρ′µν is the field strength tensor for the ρ′µ field
combination. This is due to the fact that ρ′µ transforms similar to Γµ, and so we can define a
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chiral-invariant field strength tensor ρ′µν . Furthermore, the transformation properties of Γµ

also imposes the constraint that the chiral-variant D-type coupling [BBΦvc]D should vanish,
i.e., the electric αe

V = 1. Hence, the assumption that the ρ meson couples universally [17]
to the isospin current in this model is a direct consequence of chiral SU(3) symmetry. The
magnetic αm

V is still a free parameter.
Notice that the SU(3)L×SU(3)R invariant interaction LI contains through the structure

of the Φsc, Φvc, and Φax, not only the single meson-baryon vertices, leading to OBE, TME,
etc., but also multi-meson couplings to baryons. The couplings for all these multi-meson
interactions can all be expressed in terms of the single-meson interaction coupling constants.
Also, the couplings of the axial-vector mesons are all directly related to those of the pseudo-
scalar mesons.

The couplings of the single-meson vertices have all been discussed in detail in [7]. In
the chiral ESC-model [7] we include, as explained in the Introduction, one-boson-exchange,
two-meson exchange, and meson-pair exchanges that are generated by the chiral-invariant
interactions described above. In confronting this chiral ESC-model with the NN-data, this
fixing of all couplings is too restrictive. Below we will describe how more flexibility can be
achieved, still within the framework of chiral symmetry.

Note that the 3×3 matrices Φ are not simple representations of the scalar, vector, or
axial-vector meson fields, but they contain the pseudoscalar fields in a nonlinear way as
well. This means that the chiral Lagrangian contains all kinds of multiple-meson (pair,
triple, etc.) interactions not envisaged before. The coupling constants for these multiple-
meson interactions can all be expressed in terms of the single-meson interaction coupling
constants. This will be the subject of Sec. III.

III. MESON-PAIR INTERACTIONS

Originally, with the ESC-model [8, 9] the meson-pair interaction couplings were treated
as free parameters in order to investigate the possibilities to improve the NN-fit. The
implementation of the restrictions from e.g. CS were envisaged for a later stage of an
approach where besides OBE and TME also meson-pair exchange is exploited. In [10] it
was shown that the inclusion of chiral constraints, as implied by the linear σ-model, could
be imposed indeed. This, without impeding a substantial improvement in the description
of the NN-data as compared to a potential containing only OBE. In this section we discuss
the double-meson vertices as are characteristic for the chiral model as described in [7].
a. Vector double-meson vertices. Expanding to second order in the meson fields

Φvc =
1√
2

γµ(λρµ)− i(1− 2gV f1h)
4
√

2gV f 2
1

γµ [(λπ), ∂µ(λπ)]− i
2
√

2f1
γµ [(λπ), (λAµ)] + . . . (16)

The pair interaction Lagrangian is obtained by the replacement

γµρµ −→ γµ(π × ∂µπ), etc. , (17)

in the single-meson Lagrangian, which gives
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m2
πL(ππ) = −gNN(ππ)(NγµτN)·(π×∂µπ)− gΞΞ(ππ)(ΞγµτΞ)·(π×∂µπ)

−gΛΛ(ππ)(ΛγµΣ + ΣγµΛ)·(π×∂µπ)
+igΣΣ(ππ)(Σ× γµΣ)·(π×∂µπ). (18)

Here we introduced the square of the charged-pion mass to make the coupling constants
dimensionless. Substituting the appropriate renormalization factors and 1

2gV = gNNρ, This
leads to the coupling constants [7]

gB′B(ππ) =
m2

π

4f2
1

2Zπ − 1
Zπ

gB′Bρ

gNNρ
, (19)

for B′B = NN , ΞΞ, ΛΣ, and ΣΣ. Here, gNNρ = 1
2gV , and Zπ is given by gNNa1 =

(ma1/mπ) fNNπ

√

(1− Zπ)/Zπ. Note that by choosing [18, 16, 19] Zπ = 1
2 , i.e., making

the assumption that ma1 =
√

2mρ, all the (ππ) pair interactions are absent. However, ex-
perimentally ma1 6=

√
2mρ, and so here the (ππ) pair interactions are still present in the

interaction Lagrangian. For further explicit results for the (πK), (η8K), and (KK̄) we refer
again to [7]. Here, also the pseudo-scalar and axial-vector double meson couplings are given.
b. Axial-vector double-meson vertices. Expansion of Φax to second order in the meson
fields gives

Φax =
1√
2

γ5γµ(λAµ) +
1− gV f1h√

2gV f1
γ5γµ∂µ(λπ)− i(1− gV f1h)

2
√

2f1
γ5γµ [(λπ), (λρµ)] + . . . (20)

In complete analogy with the previous, making the substitutions

γ5γµAµ −→ γ5γµ(π×ρµ), etc.

in the single-meson LI gives the meson-pair interactions. The coupling constants are most
easily expressed in terms of gNNρ and the pseudovector coupling constants:

gB′B(πρ) = 2gNNρfB′Bπ, (21)

and similar expressions for πK∗, η8K∗, and KK∗, see [7].
c. Quadratic Φsc and Φax extensions. So far, all couplings are fixed by empirical
constraints, in the case of the single-meson vertices, and by chiral symmetry, in the case of
the pair-vertices. As mentioned before, in order to make a succesfull fit to the NN-data,
some flexibility is needed, however. Note, that because of the constraints from the baryon
mass generation, the scalar couplings are at this moment completely fixed, see [7]. In view
of the transformation properties of the Φsc and the Φax fields, we can add more interaction
terms quadratically etc. in the meson fields Φ. In order to create some freedom in the scalar
couplings we extend LI(Φsc) by the substitution

Φsc ⇒ Φsc +
√

2
( gss

mπ

)

(Φsc)
2 (22)

This, since both Φsc → HΦscH† and Φ2
sc → HΦ2

scH
† under a chiral transformation. Hence,

writing X = λcsc we have the substitution
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goct
sc Φ(8)

sc −→ 1√
2

{

goct
sc (F + X) +

g(8)
ss

mπ

(

F 2 + (FX + XF ) + X2
)

}

, (23)

and a similar expression for the singlet part. In [7] it is shown that this extension leads to the
desired freedom in the scalar meson couplings, and at the same time the proper description
of the empirical baryon masses can be maintained.

Finally, in [7] the model is extended by including interactions of the type Φ2
ax, or equiv-

alently uµuν , where uµ = − i
2

(

u†∂µ − u∂µu†
)

. Distinguishing the symmetric and the anti-
symmetric part

φs ∼ −1
2g

µν [∂µ(λπ)∂ν(λπ) + ∂ν(λπ)∂µ(λπ)] ,
φa ∼ + i

2σ
µν [∂µ(λπ)∂ν(λπ)− ∂ν(λπ)∂µ(λπ)] .

extra two-pseudo-scalar contributions to the meson-pair vertices are obtained, see [7]. From
these only the double pseudo-scalar terms are included in the actual fit to the NN-data. The
free paprameters for these new terms are g(8)

sym, g(1)
sym, and αsym for the symmetric case, and

g(8)
asym, g(1)

asym, and αasym for the antisymmetric case.

IV. APPLICATION TO NN AND PROSPECTS

In [7] we have given a first application of the manifest CS ESC-model. We imposed all
the constraints from CS and showed that the resulting NN model gives a very reasonable fit
to the NN-data. In this model the treatment of the meson-exchanges is the same as in the
Nijmegen soft-core models [1, 2].

The 12 free parameters of the model (ΛS, ΛP , ΛV , gA2 , gP , g(8)
ss , g(1)

ss , g(8)
sym, g(1)

sym, αsym,
g(8)

asym, and αasym) were determined in a fit to the Nijmegen representation [20] of the χ2

hypersurface of the NN scattering data below Tlab = 350 MeV, updated with the inclusion
of new data which have been published since then. The reached χ2-per-datum for each of the
ten energy bins is shown in Table I, in comparison with the (updated) Nijmegen partial-wave
analysis. The model gives a good description of the data below 300 MeV (χ2-per-datum
of 1.5), but rapidly worsens at higher energies. This is probably due to the nonadiabatic
expansion in the two-meson contributions [10] which, strictly speaking, is only valid below
the pion production threshold (Tlab ≈ 280 MeV). However, the χ2-per-datum of 1.9 for the
0–350 MeV energy interval is still very acceptable in comparison to other potential models
that have appeared in the literature [21]. Furthermore, it should be realized that in this
model all coupling constants satisfy constraints as imposed by chiral symmetry, or empirical
constraints, see [7]. This in contrast to any other model that has appeared in the literature.

The application to the YN and YY channels is in principle straightforward, and can be
done with only a few free parameters, like the mixing angle in the scalar nonet. This will
be useful for the study of hypernuclei, in order to have a variety of theoretical models at
disposal. This is important to investigate the sensitivity of the hypernuclear systems to
particular types of interaction, like the spin-spin, tensor, and spin-orbit interaction.
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[5] C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. C 53 (1996) 2086.
[6] S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B363, 3 (1991).
[7] V.G.J. Stoks and Th.A. Rijken, Meson-baryon coupling constants from a chiral-invariant
SU(3) Lagrangian and applications to NN scattering, to be published Nucl. Phys. A.

[8] Th.A. Rijken, Proceedings of the XIVth European Conference on Few-Body Problems in
Physics, Amsterdam, 1993, edited by B. Bakker and R. von Dantzig, Few-Body Systems,
Suppl. 7 (1994) 1.

[9] V.G.J. Stoks and Th.A. Rijken, Proceedings of the XIVth International Conference on
Few-Body Problems in Physics, Williamsburg, 1995, edited by F. Gross, p. 379.

[10] Th.A. Rijken and V.G.J. Stoks, Phys. Rev. C 54 (1996) 2851, 2869.
[11] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda, S. Nagata, Progr. Theor. Phys. Suppl.
117 (1994) 361.

[12] T. Motoba and Y. Yamamoto, Nucl. Phys. A 585 (1995) 29c.
[13] P. Ko and S. Rudaz, Phys. Rev. D 50 (1994) 6877.
[14] S. Gasiorowicz and D.A. Geffen, Rev. Mod. Phys. 41 (1969) 531.
[15] H. Pagels, Phys. Reports C 16 (1975) 219.
[16] J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).
[17] J.J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960).
[18] S. Weinberg, Phys. Rev. Lett. 18, 188 (1967).
[19] J. Schwinger, Phys. Lett. 24B, 473 (1967).
[20] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart, Phys. Rev. C
48 (1993) 792.

[21] V. Stoks and J.J. de Swart, Phys. Rev. C 47, 761 (1993); ibid. 52, 1698 (1995).

9



TABLES

TABLE I. χ2 and χ2 per datum (χ2
p.d.p.) at the 10 energy bins for the updated partial-wave

analysis (PWA) and the constrained NN potential. Ndata lists the number of data within each
energy bin. The bottom line gives the results for the total 0–350 MeV interval.

PWA potential
Bin(MeV) Ndata χ2 χ2

p.d.p. χ2 χ2
p.d.p.

0.0–0.5 145 144.45 0.996 152.40 1.05
0.5–2 68 42.97 0.632 54.52 0.80

2–8 110 106.28 0.966 186.94 1.70
8–17 296 276.31 0.933 350.87 1.19

17–35 359 279.54 0.829 376.91 1.05
35–75 585 567.18 0.970 963.92 1.65
75–125 399 409.58 1.027 483.10 1.21

125–183 760 820.69 1.080 1473.04 1.94
183–290 1047 1035.48 0.989 1676.26 1.60
290–350 992 997.02 1.005 3241.95 3.27

0–350 4761 4697.50 0.987 8959.91 1.88
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