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Abstract

We calculate the χ2 of various NN potential models with respect to the pp
scattering data. We find that only the potential models which were explicitly
fitted to the pp data give a reasonable description of these data. Most models
give a pretty large χ2 on the very low-energy pp data, due to incorrect 1S0

phase shifts.
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I. INTRODUCTION

The NN interaction has been the subject of investigation for more than half a century,
which is reflected in the numerous potential models that have appeared in the literature.
When discussing potential models it has been convenient to divide the range of the inter-
action into three regions [1]: a short-range, an intermediate-range, and a long-range region.
It soon became clear that in the long-range region (r >∼ fm) the NN potential is given
by one-pion exchange (OPE). The short-range region (r <∼ 1 fm) is generally treated phe-
nomenologically, where in some models a form factor is introduced to make the potential
regular at the origin, whereas in other models a hard core is used. For the description of
the intermediate-range region (1 <∼ r <∼ 2 fm) the first logical approach was to include the
contributions from two-pion exchange. Examples of the two-pion-exchange (TPE) poten-
tials of the early 1950s are the Taketani-Machida-Ohnuma [2] and the Brueckner-Watson [3]
models. However, these TPE models did not give a satisfactory description of the NN scat-
tering data, mainly due to a lack of sufficient spin-orbit force. The necessity of a spin-orbit
force was hinted at by Gammel, Christian, and Thaler [4] when they failed to find a phe-
nomenological velocity-independent potential model consisting of central and tensor parts
which was able to fit all of the data available at that time.

The breakthrough came in 1957 with the simultaneous construction of the purely phe-
nomenological Gammel-Thaler potential [5] and the semiphenomenological Signell-Marshak
potential [6], both models introducing phenomenological spin-orbit potentials. The Gammel-
Thaler model gave a good fit to the scattering data up to 310 MeV. The Signell-Marshak
model, consisting of the TPE Gartenhaus potential [7] together with a phenomenological
spin-orbit force, was successful up to 150 MeV. These potential models were soon improved
upon, where we mention the hard-core Hamada-Johnston [8] and Yale [9] models, and the
various hard-core and soft-core models constructed by Reid [10].

With the discovery of the heavy mesons in the early 1960s a different approach was
launched. In this approach the NN interaction is written as a sum over one-boson-exchange
(OBE) potentials. The OBE models are very successful in that the vector-meson and scalar-
meson exchanges supply the required spin-orbit forces. However, the short-range part still
has to be described phenomenologically. Examples of some of the early OBE models are
given in Refs. [11, 12, 13], whereas some of the more recent models will be discussed in Sec.
III.

Most of the early models gave a for that time reasonable description of the NN scattering
data. However, over the years the concept over what is accepted as reasonable has changed.
At present, a model which describes the pp scattering data will only be called reasonably
good if it has χ2/Ndata

<∼ 2, where Ndata denotes the number of pp scattering data. In Sec.
III we show that only few of the models that have appeared in the literature still live up
to this criterion of having χ2/Ndata

<∼ 2. On the other hand, with the fast computers and
the accurate partial-wave analyses presently available, it has now become rather easy to
construct phenomenological potential models which have the excellent quality of χ2/Ndata ≈
1. Such a potential model for the NN interaction with χ2/Ndata ≈ 1 is the best one can
hope to achieve. The quality of the fit of such a potential model can compete with the fit
of a multienergy partial-wave analysis, and in a sense provides another form of partial-wave
analysis. Several of such high-quality potential models will be presented in a forthcoming
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paper [14].
In this paper we will use the Nijmegen representation of the χ2 hypersurface of the pp

scattering data to calculate the χ2 with respect to the pp scattering data for a number of
different NN potential models. The Nijmegen representation is obtained from the single-
energy analyses of the Nijmegen pp partial-wave analysis [15]. It provides an adequate
representation of the scattering data.

We want to stress that such a comparison between potential models can only be done
fairly when for all potential models the χ2 with respect to the data is calculated correctly and
in the same way. This in order to avoid any ambiguities regarding whether or not any specific
electromagnetic corrections are accounted for. For that purpose we calculate the phase
shifts for each potential model by solving the radial Schrödinger equation in the presence
of the Coulomb interaction. For the 1S0 phase shift the vacuum polarization potential
and the two-photon-exchange modification to the Coulomb potential are also included (for
details see, e.g., Ref. [15]). We make one exception, however: For the momentum-space
Bonn potential [16] we use the phase shifts as provided by one of the authors. The reason
is that a proper treatment of the electromagnetic interaction is very important if the pp
scattering data are to be described properly (see, e.g., Ref. [17]), and we do not have the
software programs for handling electromagnetic effects in momentum-space calculations. For
Tlab < 30 MeV, the 1S0 phase shifts of the Bonn potential were adjusted by us such as to
account for vacuum polarization and modified Coulomb effects. The proper way of how to
make these adjustments is described in Ref. [18].

Another important aspect for a fair comparison between various potential models is that
they should all be compared with the same database. We use the database of the Nijmegen
partial-wave analysis [15]. This database is as complete as possible and has been scrutinized
very carefully where all bad data or groups of bad data have been removed.

In Sec. II we explain how the Nijmegen representation of the χ2 hypersurface of the pp
scattering data can be used to calculate χ2 with respect to these data for any particular
potential model. The advantage of using the Nijmegen representation is that the phase
shifts of a model that is to be investigated need only be calculated at a small number of
energies, namely at the 10 energies of the single-energy analyses of the Nijmegen partial-wave
analysis [15]. This small number (10) should be compared with the much larger number
of energies at which experimental data have been measured (about 200). Therefore, using
the Nijmegen representation of the pp data rather than the data themselves saves a lot of
computer time, while the results are almost always sufficient for their purpose.

In Sec. III we present our results for some of the more well-known potential models that
have appeared in the literature, most of which are still commonly used in other calcula-
tions involving the NN interaction. Examples of such calculations are pp bremsstrahlung,
three-nucleon elastic scattering, few-nucleon bound-state calculations, and nuclear matter
calculations. The list of potential models that we discuss is not complete. For example,
momentum-space potentials will not be considered here, due to reasons already discussed
above. The only exception is the momentum-space Bonn potential, since it is widely used
and a specific pp version has been published [16]. Four of the more recent potential models
which give a good description of the pp data are then studied in more detail.
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II. REPRESENTATION OF χ2 HYPERSURFACE

The details of the Nijmegen way of analyzing the pp scattering data are extensively
discussed elsewhere [18, 15], and will not be repeated here. Here we want to stress that the
Nijmegen partial-wave analysis is not particularly important for the present calculations,
because we compare various potential models with the experimental data. What is important
is that we can use the same computer programs as used in the Nijmegen partial-wave analyses
to compute properly the pp scattering amplitudes. In doing the comparison we make use of
a representation of the χ2 hypersurface of the pp scattering data, which was produced by the
Nijmegen single-energy partial-wave analyses of the pp scattering data. This χ2 hypersurface
is somewhat dependent on the Nijmegen multienergy (m.e.) analysis, but the crucial point
is that it provides an excellent representation of the pp data, as will be demonstrated below.

The Nijmegen representation of the χ2 hypersurface is obtained as follows. In the single-
energy (s.e.) analyses the 1787 pp scattering data below Tlab = 350 MeV are clustered at 10
energies from 382.54 keV (the interference minimum) up to 320 MeV. The total χ2

se of all 10
s.e. analyses amounts to χ2

se = 1676.3. These s.e. analyses provide us with 10 error matrices
En. The error matrix is the inverse of half the second-derivative matrix of the χ2 hypersurface
with respect to the phase shifts within a particular energy bin. The Nijmegen representation
of the χ2 hypersurface of the pp scattering data consists of the number χ2

se = 1676.3 and
the 10 error matrices En at the 10 different energies. It provides a good representation of
the scattering data within each energy bin. However, this representation is not exact. First
of all, the higher partial-wave phase shifts are fixed at their m.e. values. Furthermore, the
data have been clustered at some central energy within an energy bin using the results of
the m.e. fit, and next to that we have used the approximation that the χ2 hypersurface is
quadratic in the neighborhood of the minimum.

The representation of the data can be used as follows. The phase shifts of a model are
calculated at the 10 central energies of the s.e. analyses. Denoting by dn the deviation of
the phase-shift predictions of the model from the s.e. phase shifts in the nth energy bin, the
χ2 of the model can be written as a sum of the s.e. contributions χ2

se,n and the contributions
from the inverse error matrices χ2

rep,n, i.e.,

χ2(model) =
∑

n

(

χ2
se,n + χ2

rep,n

)

= χ2
se +

∑

n
dT

nE−1
n dn . (1)

In using Eq. (1), we account for the correlations between the different phase shifts, because
this information is stored in the error matrices.

In order to investigate the quality of the Nijmegen representation of the χ2 hypersurface,
we tested it in several ways. First, we used our m.e. phase shifts as model phase shifts
and calculated the corresponding χ2 contribution. These χ2

rep,n contributions of the m.e.
phase shifts are listed in the last column of Table I. They should be added to the χ2

se,n
of the s.e. analyses given in the next to last column of Table I to give the total χ2 within
each energy bin. For all 10 energy bins we find that the agreement of χ2

se,n + χ2
rep,n with

the corresponding χ2
me,n of the m.e. analysis is very good. The difference between the total

χ2(model) = 1786.8 given by Eq. (1) and the χ2
me = 1786.4 reached in our m.e. analysis is

4



only 0.4. This means that the χ2 as calculated directly on the data and the χ2 calculated
via Eq. (1) only differ by 0.02%. It shows that the approximation, that the χ2 hypersurface
of the s.e. analyses is quadratic up to the minimum χ2

me of the m.e. analysis, is actually very
good. For completeness, we have also listed in Table I the number of scattering data Ndata

within each energy bin, which is the number of scattering observables plus the number of
normalizations with an experimental error. The information presented in Table I forms the
basis for our test of the quality of various potential models to be discussed in the sections
below.

As a second test for the quality of the Nijmegen representation of the χ2 hypersurface,
we used the Nijmegen soft-core potential (Nijm78) [19] to compare the χ2(model) obtained
using Eq. (1) with the χ2(data) obtained from a direct comparison with the data. We are
now farther away from the minimum χ2, so we expect that the χ2 hypersurface will no longer
be quadratic. As a consequence, the result for χ2(model) using Eq. (1) will be less accurate.
For the Nijm78 model we find χ2(data) = 3387.5 and χ2(model) = 3462.8. The difference
of 75.3 is now about 2%, which is sufficiently small. When we are farther away from the
minimum χ2, this difference will be even larger, but Eq. (1) is still correct within the order
of magnitude. This allows us to use Eq. (1) to make statements regarding the quality of
some potential model.

The difference between χ2(model) and χ2(data) can be understood as follows. For the
calculation of the χ2 via Eq. (1) only the lower partial waves of the potential model up
to J = 4 are used. All higher partial waves are taken from the m.e. analysis. Also all
normalization constants are fixed at the values as obtained in the s.e. analyses. On the
other hand, in the direct comparison with the data for the calculation of χ2(data) all partial
waves of the potential model up to J = 8 are used. Furthermore, all normalization constants
are automatically adjusted such as to give the best agreement with the data. This means
that χ2(data) is smaller than χ2(model).

III. COMPARISON
OF NN POTENTIAL MODELS

The Nijmegen representation of the χ2 hypersurface of the pp scattering data can be used
to test the quality of an NN potential model. For that purpose we calculate the χ2(model)
using Eq. (1). The results for a number of models are shown in Table II, where we present
the χ2

rep,n contributions. To obtain the total χ2 within a particular energy bin, one should
add the χ2

se,n as given in Table I. As discussed in the previous section, the larger entries
(>∼ 1000) in Table II are inaccurate, but they still correctly represent a large χ2

rep,n. Before
discussing each of the models in more detail we first note some general features.

For some models the 50.0 MeV energy bin gives a relatively large contribution to χ2. This
is partially due to a recently published very accurate analyzing power experiment at 50.04
MeV [20]. The accuracy of this 50.04 MeV experiment means that especially the triplet P
phase shifts at 50 MeV are now very accurately known. Because the triplet P phase shifts
of the various potential models are not always in too good an agreement with these new
accurate values, they will produce a large contribution to χ2.

Many models give a relatively poor or even very bad description of the low-energy data.
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The reason is that the 1S0 phase shifts at 382.54 keV and 1.0 MeV are very accurately known.
So when the 1S0 phase shift of a potential model is a little bit off, the χ2 contribution will
already be enormous. However, there still remains the fact that most of these models claim
to fit the scattering length and the effective range pretty well, so one would expect that the
χ2 contribution of the low-energy data should not be too large (or as large as it is for some
of the models). In order to investigate whether the high χ2 value for some of the models
is only due to an erroneous 1S0 phase shift at these lowest energies, we also compared the
various models in a slightly different energy range. In Table II we therefore also give the
χ2 contribution on the 2–350 MeV energy range, which contains 1590 pp scattering data. If
now the quality of a potential model is bad, it is not totally due to a slightly incorrect 1S0

phase shift at low energies.
In the following we chronologically list some of the better-known NN potentials that

have appeared in the literature, most of which are still commonly used in other calculations
involving the NN interaction. The older phenomenological and TPE models of the early
1950s are not included.

HJ62: Hamada-Johnston potential [8]. The energy-independent Hamada-Johnston po-
tential is a hard-core potential. It includes the OPE potential and a phenomenological
part consisting of central, tensor, spin-orbit, and quadratic spin-orbit terms. At the time
of its presentation it provided a good representation of the pp and np scattering data be-
low 315 MeV. The 28 model parameters were fitted to the Yale phase shifts [21]. In 1970,
Humberston and Wallace [22] introduced an additional parameter to improve the deuteron
properties of the model. From Table II we see that the data in the 50 MeV bin and the very
low-energy data give a large contribution to χ2. This is not surprising in view of the much
higher accuracy with which these phase shifts are known nowadays. For the description of
the remaining 1347 data the old HJ62 model is still surprisingly good, but it is only sparsely
used anymore.

Reid68: Reid soft-core potential [10]. In the paper by Reid, a number of different hard-
core and soft-core potentials are presented. In these models each partial wave with total
angular momentum J ≤ 2 is parametrized phenomenologically in terms of Yukawa functions
of multiples of the pion mass. The OPE part itself is explicitly included. In some partial
waves an explicit distinction between central, tensor, and spin-orbit parts is used. A short-
coming of the soft-core versions is that the potentials are not regular in the origin, but still
have an r−1 singularity. The parameters were fitted to the pp and np phase shifts of the
Yale [21] and early Livermore [23] analyses. In 1981, Day [24] extended the potential for
partial waves with J > 2. Also for this model the description of the very low-energy data is
a bit off. The remaining data are described pretty well.

TRS75: Super-soft-core potential [25]. This pp + np potential contains the π-, ρ-, and
ω-exchange contributions where the coupling constants are taken from other sources. The
other important intermediate-range contributions to the NN force are parametrized phe-
nomenologically through OBE potential functions with 32 free ranges and amplitudes. The
potential contributions are regularized at the origin by steplike functions which also serve
to construct the short-range phenomenological cores, whence the name super-soft-core po-
tential. The model is an improved version of an earlier super-soft-core model by the same
group [26]. The model is very good for the 0.5–35 MeV energy region, whereas for higher en-
ergies the description rapidly becomes worse. Also the very low-energy data of the 0.382 54
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MeV bin are not described very well, even though the pion and nucleon masses used in the
pp and np potentials were especially adjusted so as to account for the difference between the
pp and np 1S0 phase shifts.

OBEG75: Funabashi potentials [27]. These potentials are constructed from the π, η, ρ,
and ω OBE potentials. Also included are the contributions of two scalar mesons δ and σ,
the masses of which were fitted to the scattering data. The potential contains the standard
OBE part and a retardation part. The off-energy-shell effects coming from the retardation,
albeit of little importance to the two-nucleon system, are expected to play an important role
in many-nucleon systems. The potentials were evaluated in coordinate space for the sake of
future investigations regarding the influence of off-energy-shell effects in finite nuclei. The
various treatments of the inner region in these potentials are a hard core, a Gaussian soft
core, and a velocity-dependent core. In each case an attractive spin-orbit core is included to
improve the triplet P phase shifts. Furthermore, all potentials are regularized by means of a
steplike cutoff function. The results presented here refer to the Gaussian soft-core potential,
denoted by OBEG. From Table II we see that the overall behavior of this model is rather
bad.

Nijm78: Nijmegen potential [19]. The mesons which give rise to the meson-exchange
forces of the Nijmegen potential are the non-strange mesons of the pseudoscalar, vector, and
scalar nonets. They can be identified with the dominant parts of the nine lowest-lying me-
son trajectories in the complex J plane. The model also includes the dominant J = 0 parts
of the Pomeron, f, f ′, A2 trajectories, which essentially lead to repulsive central Gaussian
potentials. The inner region is adjusted with an exponential form factor. The 13 model
parameters were fitted to the phase-shift error matrices of the 1969 Livermore analyses [28].
These model parameters can be checked with meson-nucleon coupling constants and cutoffs
obtained from other sources. An important feature of this model is that there exist exactly
equivalent versions of this potential for use in coordinate space or momentum space. Using
the same set of parameters, both the coordinate-space and momentum-space versions pro-
duce the same phase shifts at all energies (see also Ref. [29]). The overall description of the
pp data is good; only the χ2 contribution to the 50 MeV bin is a little bit high.

Paris80: Parametrized Paris potential [30]. The original Paris potential [31] was obtained
by calculating the TPE contributions to the NN forces from the pion-nucleon phase shifts
and from the pion-pion interaction using dispersion relations. The π- and ω-exchanges were
then also explicitly included. A balanced fitting to the phase-shift error matrices of the
1969 Livermore analysis [28] and to the pp and np scattering data themselves required a
total of 12 parameters. In 1980 a parametrized version [30] consisting of a set of Yukawa
functions provided a phenomenological representation of the Paris potential. Except for the
very low-energy region, this model gives a good description of the pp scattering data, where
also the description of the 50 MeV bin is not too bad.

Urb81: Urbana potential [32]. The Urbana potential is a purely phenomenological v14

potential where 14 represents the number of different potential types (central, spin-spin,
tensor, spin-orbit, quadratic spin-orbit, centrifugal, centrifugal spin-spin, and an overall
isospin dependence), rather than the number of phenomenological parameters. Next to
OPE and a 14-parameter representation of TPE, the short-range part is represented by two
Woods-Saxon potentials using a total of 20 parameters. All potential types are regularized
by means of a cutoff function. The parameters were fitted to the np phase shifts of the
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1977 energy-dependent phase-shift analysis by Arndt et al. [33]. The 50 MeV bin and the
150 MeV bin give relatively large contributions to χ2. Also here the description of the very
low-energy data is a bit off.

Arg84: Argonne potential [34]. The Argonne potential is similar to the Urbana potential.
It was fitted to a 1981 phase-shift analysis of Arndt and Roper (an update of the analysis of
Ref. [33]) for the np scattering data in the 25–400 MeV energy range. Next to OPE and a
14-parameter representation of TPE, the short-range part of the Argonne potential is repre-
sented by a Woods-Saxon potential using 16 parameters. The main reason for constructing
this new v14 model was to have a phase-equivalent standard of comparison for the v28 model,
which includes operators which represent all possible processes with N∆π or ∆∆π vertices.
The description of the very low-energy data is bad, which is not surprising in view of the
fact that the model was fitted to the np data with Tlab > 25 MeV. Also the 50 MeV and
150 MeV bin are not described too well. Still, in the 25–350 MeV region the Argonne model
provides an improvement over the Urbana model.

Bonn87: Coordinate-space Bonn potential [35]. The full Bonn potential is an NN
momentum-space potential. Next to π, ω, and δ exchanges, the model also contains an
explicit determination of the TPE contribution, including ρ exchange and virtual isobar
excitation. The combined πρ-exchange diagrams are included as well. The coordinate-space
version is obtained from a simple parametrization of the full model by six OBE terms (three
pairs of pseudoscalar, vector, and scalar mesons, respectively). The potentials are regu-
larized at the origin by means of dipole form factor functions. In this paper we use the
coordinate-space OBE version in order to be able to include the electromagnetic interaction.
We find that the description of the very low-energy data is very poor, while for the higher
energies the description is not very good either. It demonstrates that the coordinate-space
Bonn potential is only a poor substitute for the full Bonn model, which is claimed to give a
reasonably good description of the scattering data [35]. There have also appeared a number
of other adjusted OBE coordinate-space versions [36], Bonn A and Bonn B, which also give
a very poor description of the pp data (χ2/Ndata > 8 in the 2–350 MeV energy range).

Bonn89: Updated Bonn potential [16]. This potential model is an adaptation of the
full momentum-space Bonn potential [35] to the pp scattering data. This was done by
including the Coulomb interaction in the momentum-space calculations and making small
adjustments to guarantee a reasonable confrontation with the pp data. The scalar-meson
coupling constants were changed in such a way as to explicitly fit the pp 1S0 phase shift
below 2 MeV (as suggested in Ref. [18]), while keeping the deuteron properties in the np
3S1-3D1 channel at the values of the original full Bonn model. Indeed, now the overall
description of the pp data is good.

NijmRdl: Reidlike Nijmegen potential [14]. This model is an example of a new class of
high-quality potential models, which are almost as good as the Nijmegen m.e. pp partial-
wave analysis [15]. The model is a Reidlike version of the Nijm78 model [19] in the sense that
we define a potential form for each partial wave separately. For each partial wave we only
need to adjust a few parameters of the original Nijm78 model in order to arrive at a semiphe-
nomenological potential model which gives an excellent description of the scattering data.
In that sense this Reidlike potential model is another form of m.e. partial-wave analysis.
Preliminary versions of this Reidlike Nijmegen model were presented in Refs. [37, 38]. Com-
parison of the last column of Table I with the last column of Table II clearly demonstrates

8



the excellent quality of this potential model.
Summarizing, only the Nijm78 and Bonn89 potentials give a rather good description of

the pp scattering data over the entire 0–350 MeV energy range. When we do not include the
very low-energy (0–2 MeV) data, also the Reid68 and Paris80 models are reasonably good,
as can be read off from the last line of Table II. These four models are then roughly of the
same quality, i.e., χ2/Ndata ≈ 2. However, these “good” models are still not as good as the
NijmRdl model which has χ2/Ndata ≈ 1, which is very close to the pp partial-wave analysis.
We therefore believe that one has to be very careful in drawing conclusions regarding the
importance or unimportance of, e.g., three-nucleon forces in many-body calculations, when
these conclusions are only based on calculations where the NN interaction is represented by
an NN potential model which cannot even adequately describe the two-nucleon scattering
data.

In the remaining part of this section we will focus on the four recent potential models
which give a good (Nijm78, Paris80, Bonn89) or excellent (NijmRdl) description of the pp
scattering data. It is very instructive to see how the different partial waves contribute to the
total χ2. For that purpose we start with the m.e. phase shifts and substitute the 1S0 phase
shifts of the different potential models. We then calculate the difference ∆χ2 between this
new χ2

rep and the χ2 of the m.e. analysis. This is repeated for the other lower partial-wave
phase shifts up to J = 3 as well. In this way we can judge the quality of the various partial
waves of these models. The six separate contributions can be summed and compared with
the χ2 as obtained when we take all these potential phase shifts simultaneously as given
in Table II, which gives some measure for the importance of the correlation between the
different partial waves. The results are presented in Table III. The agreement between the
sum of the ∆χ2 contributions substituting the potential model phase shifts one at a time,
and the ∆χ2 contribution using all potential model phase shifts simultaneously is not very
good, the result for the Bonn89 potential being the worst. This means that the correlation
between the various phase shifts in the Bonn89 potential is very important.

The 3P 1 phase shift of the Nijm78 potential is found to be very close to the m.e. value. For
the other phase shifts, the ∆χ2 contributions are about the same for each of the separate
contributions. The disagreement between the Nijm78 potential and the m.e. analysis is
largest for the 1D2 phase shift.

For the Paris80 potential the 1D2 and coupled 3P 2-3F 2 phase shifts are not too good,
whereas the other phase shifts are in reasonable agreement with the m.e. analysis.

Similarly, for the Bonn89 potential the 1S0, the 3P 0, and the coupled 3P 2-3F 2 phase
shifts are not very good. This is partially due to the fact that the isovector tensor force
of the Bonn89 potential is too strong and its spin-orbit force is too weak, which can be
concluded from comparing the tensor and spin-orbit combinations of the 3P phase shifts
with the corresponding combinations as obtained in the pp partial-wave analysis.

The ∆χ2 differences of the NijmRdl model are much smaller. For the 1D2 phase shift
the difference is even negative, which means that for this partial wave the NijmRdl model is
better than the m.e. analysis. Also the 3F 3 partial wave is slightly better than in the m.e.
analysis.
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IV. CONCLUDING REMARKS

We have tested the quality of a number of NN potentials with respect to the pp scattering
data in the 0–350 MeV energy range. Of the older models only the Reid68, Nijm78, and
Paris80 models give satisfactory results when confronted with the pp data. The new Bonn89
model, an adjustment of the full Bonn potential to explicitly fit the pp data, is of a similar
quality as the Nijm78 and Paris80 potentials in the 2–350 MeV energy range.

If we also include the very low-energy data (0–2 MeV), only the Nijm78 and Bonn89
potentials still give a reasonable description of the data. The other models all give a large
to very large contribution to χ2 in this low-energy region. The reason is that the pp 1S0

phase shift at Tlab = 382.54 keV is very accurately known. So a small deviation for the 1S0

prediction from one of these potential models will give rise to an enormous contribution to
χ2. However, this contribution should not be too large, since most potential models claim to
give a good description of the scattering length and effective range parameters. Furthermore,
the fact that some of the models give a rather poor description of the pp data is not only
due to an incorrect 1S0 phase shift. As an example we consider the Arg84 potential. In
the 2–350 MeV energy range the Arg84 model gives χ2/Ndata = 7.1. When we replace the
Arg84 1S0 phase shifts by our m.e. values (which roughly corresponds to having a model
with “perfect” 1S0 phase shifts), the quality of the model improves considerably. However,
the resulting χ2/Ndata ≈ 4 is still rather large. This demonstrates that the other phase shifts
are not too good either.

An important conclusion which can be drawn from the potential comparison with the
pp scattering data discussed in this paper is that only the potential models which were
explicitly fitted to the pp data (Nijm78, Paris80, Bonn89) give a reasonable description of
these data. Here we have to keep in mind that the Nijm78 and Paris80 models were fitted
to the 1969 Livermore database [28]. Our present database contains a large number of new
and more accurate data, which are still described rather well by these two models. The
Bonn89 potential was fitted to a much more recent database, not too different from our
present database. Apparently, a good fit to the np data does not automatically guarantee a
good fit to the pp data. One of the reasons is that the np data are less accurate than the pp
data, so the constraints on the np phase shifts are not so large. Also, the difference between
the pp and np 1S0 phase shifts should be included explicitly.

We therefore conclude that if a potential model is claimed to give a good description of
the pp scattering data, this claim should be based on an explicit confrontation of the model
with these pp data, either directly or using Eq. (1).

Part of this work was included in the research program of the Stichting voor Fundamen-
teel Onderzoek der Materie (FOM) with financial support from the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO).
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TABLES

TABLE I. The χ2 results of the pp partial-wave analyses for the 10 single-energy bins.

Energy Bin Ndata χ2
m.e.,n χ2

s.e.,n χ2
rep,n

0.38254 0.0–0.5 134 134.5 129.2 5.3
1.0 0.5–2 63 39.7 37.4 2.3
5.0 2–8 48 44.6 30.9 13.9

10.0 8–17 108 102.9 87.8 14.9
25.0 17–35 59 63.1 62.0 1.1
50.0 35–75 243 212.9 206.4 6.6

100.0 75–125 167 170.8 150.8 19.7
150.0 125–183 343 377.9 356.7 21.5
215.0 183–290 239 286.1 265.8 20.7
320.0 290–350 383 353.7 349.3 4.5

0–350 1787 1786.4 1676.3 110.5
2–350 1590 1612.2 1509.8 102.8

TABLE II. The χ2
rep,n results at the 10 single-energy bins for various NN potential models.

The shorthand notation for each model is defined in Sec. III. In order to arrive at the total χ2 one
has to add the χ2

s.e.,n contributions of the analyses listed in Table I. The χ2/Ndata in the bottom
line refers to the data in the 2–350 MeV energy range.

Bin HJ62 Reid68 TRS75 OBEG75 Nijm78 Paris80 Urb81 Arg84 Bonn87 Bonn89 NijmRdl
0.0–0.5 6620 880 480 25500 62 3660 980 845000 665000 71 5.3
0.5–2 1960 132 100 610000 8 773 20 230000 195000 7 2.3

2–8 29 63 20 5370 51 18 115 1960 2400 8 15.2
8–17 103 206 55 3980 76 33 275 1470 2540 46 13.6

17–35 201 9 23 960 67 13 575 675 1950 20 2.1
35–75 6370 300 980 5330 555 333 1920 1365 6090 346 8.0
75–125 110 128 332 320 131 41 470 265 840 57 26.1

125–183 305 242 630 6540 222 415 3280 3060 1870 284 17.9
183–290 227 110 980 2750 202 174 995 700 1420 309 13.2
290–350 835 395 1500 4500 412 560 1080 335 2660 510 11.6

0–350 16760 2465 5100 665000 1786 6020 9710 1085000 880000 1658 115.3
2–350 8180 1453 4520 29750 1716 1587 8710 9830 19770 1580 107.7

χ2/Ndata 6.1 1.9 3.8 20 2.0 1.9 6.4 7.1 13 1.9 1.0
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TABLE III. The difference ∆χ2 (see text) in the 2–350 MeV energy range of the potential
models using all potential phase shifts, or using one particular phase shift only.

All One particular phase shift
Model phases 1S0

3P 0
3P 1

3P 2-3F 2
1D2

3F 3 Sum
Nijm78 1614 283 396 5 462 570 378 2094
Paris80 1480 165 215 139 709 600 232 2060
Bonn89 1478 720 481 87 695 340 84 2407

NijmRdl 4.9 2.9 1.1 0.4 4.5 –6.6 –0.6 1.7
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